High Head Bypass Study – Direct Fish Injury and Survival Green Peter Dam, Oregon, 2016 Paul Heisey, Joanne Phipps, and Adam Slowik*

*Presenter

Background

- Study conducted to provide the Corps with direct survival/injury information for consideration when designing fish bypass systems at high head dams.
- Study (year 2) was conducted at an abandoned fish bypass system at Green Peter Dam, Oregon.
- Remaining bypass system consists of four pressurized/partially pressurized 12-in bypass pipes that discharge into a non-pressurized 24-in bypass pipe which empties into fish evaluator.

Methods

Schematic of Migrant Bypass Pipe

- Juvenile Chinook Salmon and Steelhead and young-of-year (YOY) Steelhead released through 12-in pipes at elevations 910 and 935 fmsl
 - Two higher pipes at 960 and 985 fmsl not tested. Head pond ≈21 ft below full pond
- Evaluator elevation 715 fmsl; maximum head tested approx.
 225ft

Schematic of Migrant Bypass Pipe

Installation of fish release pipes

Flow Control Valve

Juvenile Chinook Salmon and Steelhead released at four flow control valve settings of full open, 75, 50, and 40% opened; YOY Steelhead at full open and 40%

open

- Fish recaptured in refurbished collection bin at end of 24-in bypass pipe.
- Fish examined for injuries and held 48 h for delayed effects of passage.
- Survival and Malady-Free (MF) estimates calculated by adjusting for control sites 1 & 3.
- MF: fish without loss of equilibrium, visible injury, and less than 20% scale loss per side.

Sample Size

• Fish from South Santiam Hatchery

	No. Treatment	No. Control	Length TL mm	
			Range	Mean
Chinook	852	200	161-260	214
Steelhead	800	200	141-290	222
YOY Steelhead	201	52	41-80	62

Results

Chinook Salmon

- All fish recaptured.
- 48 h survival estimates for Chinook Salmon were 93.0 to 100.0%.
- Survival estimates were all 100.0% except 2 of the sixteen survival estimates.
- MF estimates were 90.0 to 100.0%.
- MF estimates were all ≥94.0% at thirteen of the sixteen estimates.
- Lowest survival and MF estimates were at a flow control valve opening of 40%.

Steelhead

- All fish recaptured.
- 48 h survival estimates for juvenile Steelhead all 100% except for 99.0% through pipe 910 at 75% valve opening.
- MF ranged from 91.6 to 100%.
- Lowest MF (91.6%) at pipe 910, opening of 40%.
- MF estimates ≥95.6% at fourteen of the sixteen estimates.

YOY Steelhead

- All fish recaptured.
- YOY Steelhead 48 hour survival estimates 96.0% and 100%.
- MF ranged from 96.0 to 100%.
- No consistent trend for lower survival and MF at the 40% valve opening.

Injuries (not adjusted for control fish)

- 4.7% of treatment Chinook visibly injured.
- 3.3% of treatment Steelhead visibly injured.
- 1.5% of YOY Steelhead visibly injured.
- Chinook primary injuries were eye damage (2.7%) and operculum damage (1.1%).
- Steelhead primary injuries were eye damage (1.9%) and operculum damage (0.8%).
- YOY Steelhead primary injuries were eye damage (1.0%).

Examples of Injuries

Examples of injuries to juvenile Chinook Salmon after passage through 12 and 24-in bypass pipes at 40-100% flow control valve opening.

Examples of Injuries

Examples of injuries to juvenile Steelhead after passage through 12 and 24-in bypass pipes at 40-100% flow control valve opening.

Conclusions

 Four studies conducted at the Green Peter Dam bypass system suggest the bypass pipes should be able to safely pass ≥96% of juvenile salmonids provided the flow control valves are ≥50% open.

- The 24 ft additional operating head in 2016 than in 2015 did not result in higher injury or mortality at valve openings ≥ 50%.
 - However, valve opening near 25% in 2016 inflicted considerably more injury and mortality than 25% valve opening in 2015.

Management Action

 The higher incident of injuries to Chinook salmon (4.7%) than Steelhead (3.3%) may warrant further investigation.

Acknowledgements/Questions

U. S. Army Corps of Engineers; Portland District Fenton Khan

Advanced Mechanical crew Normandeau Associates staff

